import cv2 def draw_square(frame, faces, color): for (x, y, w, h) in faces: face_region = frame[y:y+h, x:x+w] cv2.rectangle(frame, (x, y), (x + w, y + h), color, 1) return frame video_capture = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") side_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_profileface.xml") detected_faces = [] detected_profiles = [] ret, frame = video_capture.read() if ret: frameH, frameW = frame.shape[:2] while True: ret, frame = video_capture.read() if not ret: break gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) detected_faces = faces faces = side_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) detected_profiles = faces target = [0, 0, 0, 0] if len(detected_faces) != 0 : for face in detected_faces : if face[3] > target[3] : target = face print(f"{target[3]}") # print(f"midH={frameH} midW={frameW} {len(detected_faces)} {len(detected_profiles)} ") frame = draw_square(frame, detected_faces, (0, 255, 0)) frame = draw_square(frame, detected_profiles, (255, 0, 0)) if len(detected_faces) != 0 : targetX = int (target[0] + (target[2] / 2)) targetY = int (target[1] + (target[3] / 2)) else : targetX = int (frameW / 2) targetY = int (frameH / 2) cv2.rectangle(frame, (targetX, targetY), (targetX + 2, targetY + 2), (0, 0, 255), 1) cv2.imshow("Faces", frame) if cv2.waitKey(1) != -1: break video_capture.release() cv2.destroyAllWindows()